Il pianeta Nettuno

Nettuno è l'ottavo e più lontano pianeta del Sistema solare, partendo dal Sole. Si tratta del quarto pianeta più grande, considerando il suo diametro, e addirittura il terzo se si considera la sua massa. Nettuno ha 17 volte la massa della Terra ed è leggermente più massiccio del suo quasi-gemello Urano, la cui massa è uguale a 15 masse terrestri, ma è meno denso di Nettuno.
Scoperto il 23 settembre 1846, Nettuno fu il primo pianeta ad essere stato trovato tramite dei calcoli matematici più che attraverso delle regolari osservazioni: dei cambiamenti insoliti nell'orbita di Urano lasciarono credere agli astronomi che vi fosse al di là un pianeta sconosciuto che ne perturbasse l'orbita. Il pianeta fu scoperto entro appena un grado dal punto predetto. La luna Tritone fu individuata poco dopo, ma nessun altro dei 12 satelliti naturali di Nettuno fu scoperto prima del XX secolo. Il pianeta è stato visitato da una sola sonda spaziale, la Voyager 2 che transitò vicino ad esso il 25 agosto 1989.
Nettuno ha una composizione simile a quella di Urano ed entrambi hanno composizioni differenti da quelle dei più grandi pianeti gassosi Giove e Saturno. A causa di ciò talvolta gli astronomi collocano questi due pianeti "minori" in una categoria separata, i cosiddetti "giganti ghiacciati". L'atmosfera di Nettuno, sebbene sia simile a quella di Giove e Saturno, essendo composta principalmente da idrogeno ed elio, possiede anche delle maggiori proporzioni di "ghiacci", come acqua, ammoniaca e metano, assieme a tracce di idrocarburi e forse azoto. In contrasto, l'interno del pianeta è composto essenzialmente da ghiacci e rocce come il suo simile Urano. Le tracce di metano presenti negli strati più esterni dell'atmosfera contribuiscono a conferire al pianeta Nettuno il suo caratteristico colore azzurro intenso.
Nettuno possiede i venti più forti di ogni altro pianeta nel Sistema solare: sono state misurate raffiche a velocità superiori ai 2100 km/h. All'epoca del sorvolo da parte della Voyager 2, nel 1989, l'emisfero sud del pianeta possedeva una Grande Macchia Scura, comparabile con la Grande Macchia Rossa di Giove; la temperatura delle nubi più alte di Nettuno era di circa -218°C, una delle più fredde del Sistema solare, a causa della grande distanza dal Sole. La temperatura al centro del pianeta è di circa 7×103 °C (circa 7×103 K), comparabile con la temperatura superficiale del Sole e simile a quella del nucleo di molti altri pianeti conosciuti. Il pianeta possiede inoltre un debole e frammentario sistema di anelli, scoperto negli anni sessanta ma confermato solo dalla Voyager 2.
Quando nel 1821 Alexis Bouvard pubblicò il primo studio dei parametri orbitali di Urano divenne chiaro agli astronomi che il moto del pianeta divergeva in maniera apprezzabile dalle previsioni teoriche; il fenomeno poteva essere spiegato solo teorizzando la presenza di un altro corpo di notevoli dimensioni nelle regioni più esterne del sistema solare. Indipendentemente fra loro, il matematico inglese John Couch Adams (nel 1843) e il francese Urbain Le Verrier (nel 1846) teorizzarono con buona approssimazione posizione e massa di questo presunto nuovo pianeta. Mentre le ricerche di Adams vennero trascurate dall'astronomo britannico George Airy, cui egli si era rivolto per sottolineare la necessità di ricercare il nuovo pianeta nella posizione trovata, quelle di Le Verrier vennero applicate da due astronomi dell'Osservatorio di Berlino, Johann Gottfried Galle e Heinrich d'Arrest: dopo meno di mezz'ora dall'inizio delle ricerche - aiutati dall'utilizzo di una carta stellare della regione in cui si sarebbe dovuto trovare Nettuno che avevano compilato le notti precedenti e con cui confrontarono le osservazioni - il 23 settembre 1846, i due individuarono il pianeta, a meno di un grado dalla posizione prevista da Le Verrier (ed a dodici gradi dalla posizione prevista da Adams).
Nel giugno del 1846, Le Verrier aveva pubblicato una stima della posizione del pianeta simile a quanto calcolato da Adams. Ciò aveva spinto Airy a sollecitare il direttore dell'Osservatorio di Cambridge, James Challis, a cercare il pianeta. Challis aveva quindi setacciato il cielo tra agosto e settembre, ma invano. Dopo che Galle ebbe comunicato l'avvenuta scoperta, Challis realizzò di aver osservato il pianeta due volte in agosto, ma di non averlo identificato a causa della metodologia con cui aveva affrontato la ricerca.
Sulla scia della scoperta, si sviluppò un'accesa rivalità tra francesi ed inglesi sulla priorità della scoperta, da cui emerse infine il consenso internazionale che entrambi, Le Verrier ed Adams, ne meritassero il credito. La questione è stata riaperta nel 1998 dopo la morte dell'astronomo Olin J. Eggen, dal ritrovamento di un fascicolo, chiamato "Neptune papers", di cui Eggen era in possesso. Il fascicolo contiene documenti storici provenienti dall'Osservatorio reale di Greenwich che sembra siano stati rubati dallo stesso Eggen e nascosti per quasi tre decenni. Dopo aver preso visione di tali documenti, alcuni storici suggeriscono che Adams non meriti egual credito con Le Verrier. Dal 1966 Dennis Rawlins ha messo in discussione la credibilità della rivendicazione di co-scoperta di Adams. In un articolo del 1992 sul suo giornale, Dio, ha espresso l'opinione che la rivendicazione britannica sia un "furto". Nel 2003 Nicholas Kollerstrom dell'University College London ha detto: «Adams ha eseguito alcuni calcoli ma era piuttosto incerto su dove diceva che Nettuno fosse».
Nettuno è invisibile ad occhio nudo da Terra; la sua magnitudine apparente, sempre compresa fra la 7,7 e la 8,0, necessita almeno di un binocolo per permettere l'individuazione del pianeta.
Visto attraverso un grande telescopio, Nettuno appare come un piccolo disco bluastro dal diametro apparente di 2,2–2,4 secondi d'arco., simile nell'aspetto ad Urano. Il colore è dovuto alla presenza di metano nell'atmosfera nettuniana, in ragione del 2%. Si è avuto un netto miglioramento nello studio visuale del pianeta da Terra con l'avvento del Telescopio spaziale Hubble e dei grandi telescopi a terra con ottiche adattive. Le immagini migliori ottenibili da Terra permettono oggi di individuarne le formazioni nuvolose più pronunciate e le regioni polari, più chiare del resto dell'atmosfera. Con strumenti meno precisi è impossibile individuare qualsiasi formazione superficiale del pianeta, ed è preferibile dedicarsi alla ricerca del suo satellite principale, Tritone.
Ad osservazioni nelle frequenze radio, Nettuno appare essere la sorgente di due emissioni: una continuata e piuttosto debole, l'altra irregolare e più energetica. Gli studiosi ritengono che entrambe sono generate dal campo magnetico rotante del pianeta. Le osservazioni nell'infrarosso esaltano le formazioni nuvolose del pianeta, che brillano luminose sullo sfondo più freddo, e permettono di determinarne agevolmente le forme e le dimensioni.
Fra il 2010 ed il 2011 Nettuno completerà la sua prima orbita attorno al Sole dal 1846, quando venne scoperto da Johann Galle, e sarà quindi osservabile in prossimità delle coordinate a cui è stato scoperto.Con una massa di 1,0243x1026 kg, Nettuno è un corpo intermedio fra la Terra ed i grandi giganti gassosi: la sua massa è diciassette volte quella della Terra, ma è appena un diciannovesimo di quella di Giove. Il raggio equatoriale del pianeta è di 24,764 km, ossia circa quattro volte maggiore di quello della Terra. Nettuno e Urano sono spesso considerati come una sottoclasse di giganti, chiamata "giganti ghiacciati", a causa delle loro dimensioni inferiori e alla più alta concentrazione di sostanze volatili rispetto a Giove e Saturno. Nella ricerca di pianeti extrasolari Nettuno è stato usato come termine di paragone: i pianeti scoperti con una massa simile sono detti infatti "pianeti nettuniani", così come gli astronomi si riferiscono ai vari "pianeti gioviani".
La struttura interna di Nettuno ricorda quella di Urano; la sua atmosfera forma circa il 5-10% della massa del pianeta, estendendosi dal 10 al 20% del suo raggio, dove raggiunge pressioni di circa 10 gigapascal. Nelle regioni più profonde sono state trovate delle concentrazioni crescenti di metano, ammoniaca e acqua.
Gradualmente questa regione più calda e oscura condensa in un mantello liquido surriscaldato, dove le temperature raggiungono valori compresi fra i 2000 K ed i 5000 K; il mantello possiede una massa di 10-15 masse terrestri ed è ricco di acqua, ammoniaca, metano ed altre sostanze. Come è solito nelle scienze planetarie, questa mistura è chiamata "ghiacciata", sebbene sia in realtà un fluido caldo e molto denso; questo fluido, che possiede un'elevata conducibilità elettrica, è talvolta chiamato "oceano di acqua e ammoniaca". Alla profondità di 7000 km, lo scenario potrebbero essere quello in cui il metano si decompone in cristalli di diamante e precipita verso il centro.
Il nucleo planetario di Nettuno è composto da ferro, nichel e silicati; i modelli forniscono una massa di circa 1,2 masse terrestri. La pressione del nucleo è di 7 megabar, milioni di volte superiore a quella della superficie terrestre, e la temperatura potrebbe essere sui 5400 K.
Ad alta quota, l'atmosfera di Nettuno è formata all'80% da idrogeno e al 19% da elio,
Nettuno ha un sistema di anelli planetari, uno dei più sottili del Sistema solare; gli anelli potrebbero consistere di particelle legate con silicati o materiali composti da carbonio, che conferisce loro un colore tendente al rossastro.In aggiunta al sottile Anello Adams, a 63000 km dal centro del pianeta, si trova l'Anello Leverrier, a 53000 km, ed il suo più vasto e più debole Anello Galle, a 42000 km. Un'estensione più lontana di quest'ultimo anello è stata chiamata Lassell; è legata al suo bordo più esterno dall'Anello Arago, a 57000 km.
Il primo di questi anelli planetari fu scoperto nel 1968 da un gruppo di ricerca guidato da Edward Guinan,ma si era in seguito pensato che quest'anello potesse essere incompleto. Evidenze che l'anello avrebbe avuto delle interruzioni giunsero durante un'occultazione stellare nel 1984 quando gli anelli oscurarono una stella in immersione ma non in emersione. Immagini della sonda Voyager 2 prese nel 1989 mostrarono invece che gli anelli di Nettuno erano molteplici; questi anelli hanno una struttura a gruppi, la cui causa non è ben compresa ma che potrebbe essere dovuta all'interazione gravitazionale con le piccole lune in orbita nei pressi.
L'anello più interno, Adams, contiene cinque archi maggiori chiamati Courage, Liberté, Egalité 1, Egalité 2, and Fraternité. L'esistenza degli archi è stata difficile da spiegare poiché le leggi del moto predirrebbero che gli archi verrebbero dispersi in un anello uniforme in una scala temporale molto breve. Gli astronomi ritengono che gli archi siano rinchiusi entro le loro forme attuali a causa degli effetti gravitazionali di Galatea, una luna posta all'interno dell'anello.
Osservazioni condotte da Terra annunciate nel 2005 sembravano mostrare che gli anelli di Nettuno sono molto più instabili di quanto in precedenza creduto. Immagini prese con i Telescopi Keck nel 2002 e 2003 mostrano un decadimento considerevole negli anelli quando vengono comparati con le immagini prese dalla Voyager 2; in particolare, sembra che l'arco Liberté potrebbe dissolversi entro la fine del XXI secolo.
più delle tracce di metano. Notevoli bande di assorbimento del metano si trovano vicino alla lunghezza d'onda dei 600 nm, nella parte rossa ed infrarossa dello spettro. Così come Urano, quest'assorbimento della luce rossa da parte del metano atmosferico contribuisce a conferire a Nettuno il suo caratteristico colore azzurro intenso, sebbene il colore azzurro differisca dal più tenue acquamarina tipico di Urano. Dato che la quantità di metano contenuta nell'atmosfera di Nettuno è simile a quella di Urano, ci dev'essere qualche altra sostanza non conosciuta che contribuisca in modo determinante a conferire questa tonalità così intensa al pianeta.
L'atmosfera di Nettuno è suddivisa in due regioni principali: la bassa troposfera, dove la temperatura decresce con l'altitudine, e la stratosfera, dove la temperatura aumenta con l'altitudine; il confine fra le due, la tropopausa si trova a circa 0,1 bar. La stratosfera dunque è seguita dalla termosfera alla pressione inferiore a 10?4–10?5 microbar. L'atmosfera sfuma gradualmente verso l'esosfera.
I modelli suggeriscono che la troposfera di Nettuno sia attraversata da nubi di varia composizione a seconda dell'altitudine; il livello superiore di nubi si trova a pressioni inferiori a 1 bar, dove la temperatura è adatta alla condensazione del metano. Con pressioni fra 1 e 5 bar si crede si formino nubi di ammoniaca e acido solfidrico; oltre i 5 bar di pressione, le nubi potrebbero essere costituite da ammoniaca, solfato d'ammonio ed acqua. Le nubi più profonde di ghiaccio d'acqua potrebbero formarsi a pressioni attorno ai 50 bar, dove la temperatura raggiunge i 0°C. Sotto ancora, si potrebbero trovare delle nubi di ammoniaca e acido solfidrico.
Sono state osservate nubi d'alta quota su Nettuno che formano delle ombre sopra l'opaco manto nuvoloso sottostante. Ci sono anche delle bande di nubi d'alta quota che circondano il pianeta a latitudini costanti; queste bande disposte a circonferenza hanno degli spessori di 50-150 km e si trovano a circa 50-110 km sopra il manto nuvoloso sottostante.
Lo spettro di Nettuno suggerisce che i suoi strati atmosferici inferiori siano nebbiosi a causa della concentrazione di prodotti della fotolisi ultravioletta del metano, come etano e acetilene; l'atmosfera contiene anche tracce di monossido di carbonio e acido cianidrico. La stratosfera del pianeta è più tiepida di quella di Urano a causa dell'elevata concentrazione di idrocarburi.
Per ragioni ancora non conosciute, la termosfera planetaria possiede una temperatura insolitamente alta, pari a circa 750 K. Il pianeta è troppo lontano dal Sole perché il calore sia generato dalla radiazione ultravioletta; una possibilità per spiegare il meccanismo di riscaldamento è l'interazione atmosferica fra ioni nel campo magnetico del pianeta. Un'altre possibile causa è data dalle onde di gravità dall'interno che si disperdono nell'atmosfera. La termosfera contiene tracce di diossido di carbonio ed acqua, che potrebbero provenire da sorgenti esterne, come meteoriti e polveri.
Una differenza fra Nettuno e Urano è il livello tipico di attività meteorologica; quando la sonda spaziale Voyager 2 sorvolò Urano, nel 1986, questo pianeta era visivamente privo di attività atmosferica. In contrasto, Nettuno mostrava notevoli fenomeni climatici durante il sorvolo della sonda, avvenuto nel 1989.
Il tempo meteorologico di Nettuno è caratterizzato da sistemi tempestosi estremamente dinamici, con venti che raggiungono la velocità quasi supersonica di 600 m/s. Più tipicamente, tracciando il movimento delle nubi persistenti, la velocità del vento sembra variare dai 20 m/s in direzione est fino ai 235 m/s in direzione ovest. Sulla cima delle nubi, i venti predominanti variano in velocità dai 400 m/s lungo l'equatore ai 250 m/s sui poli. Molti dei venti di Nettuno si muovono in direzione opposta rispetto alla rotazione del pianeta. Il livello generale dei venti mostra una rotazione prograda alle alte latitudini e retrograda alle basse latitudini; la differenza della direzione dei flussi ventosi si crede sia un effetto superficiale e non dovuto ad alcun processo atmosferico più profondo. A 70° S di longitudine, un getto ad alta velocità viaggia a 300 m s?1.
L'abbondanza di metano, etano e acetilene all'equatore di Nettuno è 10–100 volte superiore di quella dei poli; ciò è interpretato come un'evidenza della presenza di fenomeni di risalita all'equatore e di subsidenza verso i poli.
Nel 2007 fu scoperto che gli strati superiori della troposfera del polo sud di Nettuno erano di circa 10°C più tiepidi che nel resto del pianeta, con una media di circa -200°C. Il differenziale di calore è sufficiente per consentire al gas metano, che in altri punti si gela nell'alta atmosfera del pianeta, di essere espulso verso lo spazio. Il relativo "hot spot" è dovuto all'inclinazione dell'asse di Nettuno, che ha esposto il polo sud al Sole per l'ultimo quarto di anno nettuniano, pari a circa 40 anni terrestri; similmente a come avviene nella Terra, l'alternanza delle stagioni farà in modo che il polo esposto al Sole sarà in seguito il polo nord, causando così il riscaldamento e la successiva emissione di metano dall'atmosfera in quest'ultimo polo.
A causa del cambiamento stagionale, le bande di nubi dell'emisfero sud di Nettuno sono aumentate in dimensioni e albedo; questo processo fu osservato inizialmente nel 1980 e ci si aspetta che finirà attorno al 2020. Il lungo periodo orbitale di Nettuno causa un alternarsi stagionale in quarant'anni.

Nella figura a destra, La Grande Macchia Scura (in alto), Scooter (la nube bianca in mezzo), e la Piccola Macchia Scura (in basso).
F. Canepari